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Efficient synthesis of the tricyclic key intermediate 2 for (�)-FR901483 1 was accomplished. The precur-
sor of the intramolecular aldol reaction 4b is constructed by the Ugi 4CC reaction and subsequent
intramolecular Dieckmann condensation. This approach allows a fully stereocontrolled total synthesis
of (�)-FR901483, which would provide various derivatives.

� 2010 Elsevier Ltd. All rights reserved.
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(�)-FR901483 1 is an immunosuppressant isolated from the
fermentation broth of Cladobotryum sp. No. 11231.1 Because its un-
ique tricyclic structure is an attractive target for the total synthesis,
several synthetic studies2 and total syntheses3 have been reported.
Since we reported a stereoselective total synthesis of racemic 1 in
2004,3e our next challenge has been to devise a synthetic route to
the optically active form of 1. Herein, we report a short-step and
stereocontrolled synthesis of optically active tricyclic 2, a key
intermediate of our racemic total synthesis of 1.

Our retrosynthetic analysis of 1 is illustrated in Scheme 1. In
view of the fact that the crucial step in our racemic synthesis
was an intramolecular aldol reaction of the keto-aldehyde 4a to
provide the tricycle intermediate 3a, our first attempt was to per-
form an enantioselective intramolecular aldol reaction of 4a by
means of chiral catalysts. Since desymmetrical aldol reactions of
4a with several types of chiral catalysts did not give satisfactory re-
sults,4 we decided to examine a diastereoselective aldol reaction of
4b to construct the tricycle intermediate 3b, which could easily be
converted to intermediate 2 according to our racemic synthesis.
The crucial step of our synthesis, therefore, should be the facile
construction of the optically pure spiro intermediate 4b. While
numerous procedures have been reported on the synthesis of a-tri-
substituted amines, we opted to employ the Ugi 4CC reaction5 to
construct 5 because of its powerfulness in assembling complex
molecules from simple components.6

As shown in Scheme 2, a mixture of commercially available
cyclohexanedione monoethyene acetal 6, optically active amine 7
(Scheme 4),7 p-methoxyphenyl isocyanide 8,8 and acetic acid 9 in
ll rights reserved.
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Scheme 1. Structure and synthetic strategy of (�)-FR901483.
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Scheme 2. Synthesis of cyclization precursor 4b for an intramolecular aldol
reaction.
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Scheme 3. Synthesis of optically active key intermediate 2.
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Scheme 4. Preparation of optically active amine 7. (i) MeI, K2CO3, DMF, rt, 99%; (ii)
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MeOH was allowed to stand at room temperature to afford 10,9 in
which all the carbon atoms necessary to construct the tricyclic key
intermediate 2 were efficiently assembled in a single step.
Although hydrolysis of the C-terminal amide bond in the Ugi ad-
ducts is often troublesome,10 methanolysis of the p-methoxy-
phenyl amide in 10 proceeded (Scheme 5)11 unusually smoothly
with a concomitant acetal exchange to provide 5. Subsequent
intramolecular Dieckmann condensation proved to be quite effec-
tive in constructing the spiro-lactam ring. Thus, upon treatment
with LHMDS, 5 underwent a cyclization to give 11. The ensuing
deoxygenation of the carbonyl group in 11 was carried out in a
three-step sequence involving a reduction of the ketone with
NaBH4, dehydration with phosphoryl chloride, and a chemoselec-
tive one-electron reduction of the resultant unsaturated lactam,
giving the desired amide 12. In addition, simultaneous hydrolysis
of the dimethyl acetal occurred during the acidic work-up of the
last step.12 At this stage, oxidative cleavage of terminal olefin in
12 was performed by ozonolysis to afford 4b.

With the desired optically active keto-aldehyde 4b in hand, we
then focused on the diasteroselective intramolecular aldol reac-
tion. The similar intramolecular cyclization of 4b was reported
by Snider.13 Although we have tested the same reactions, the
reproducibility was not enough. Therefore we selected acidic con-
ditions at room temperature. After several attempts, upon treat-
ment of keto-aldehyde 4b with acetic acid and a catalytic
amount of pyrrolidine,14 the desired cyclization proceeded
smoothly to afford 3b. The advantage of this transformation is that
the two chiral centers were distinctively generated in one step.
While the stereochemistry of the hydroxy group in 3b is the
opposite of the natural product,15 it was needed in controlling
the endo-reduction of the ketone of 3b. Thermodynamic control
might presumably be operating for the stereochemistry of the die-
quatorial aldol product 3b. Following the route established for
racemic 3a, 3b was converted uneventfully to 2. Thus, stereoselec-
tive reduction of 3b was carried out by NaBH(OAc)3 via chelation
with the hydroxyl group to give 14 (Scheme 3).

Selective protection of the exo-oriented hydroxy group of 14 as
the TBS ether followed by Swern oxidation of the remaining alco-
hol provided the key intermediate 2. All spectral data (1H NMR,
13C NMR, IR, and HRMS) of 2 are in agreement with our intermedi-
ate in the racemic synthesis, except for an optical rotation. The
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enantiomeric excess of 2 (96% ee) was determined by a chiral
HPLC.

In conclusion, we have achieved an efficient synthesis of the key
intermediate 2 for the total synthesis of (�)-FR901483 1, utilizing
the Ugi 4CC reaction and a diastereoselective intramolecular aldol
reaction. We are currently improving our racemic route16 for the
total synthesis of (�)-FR901483 and its analogs, and the results
will be published in due course.
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